基于视觉的液晶屏/OLED屏缺陷检测方法综述

基于视觉的液晶屏/OLED屏缺陷检测方法综述

Aiger D and Talbot H . 2010 . The phase only transform for unsupervised surface defect detection // Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . San Francisco, USA : IEEE: 295 - 302 [ DOI: 10.1109/CVPR.2010.5540198 http://dx.doi.org/10.1109/CVPR.2010.5540198 ]

Badrinarayanan V , Kendall A and Cipolla R . 2017 . SegNet: a deep convolutional encoder-decoder architecture for image segmentation . IEEE Transactions on Pattern Analysis and Machine Intelligence , 39 ( 12 ): 2481 - 2495 [ DOI: 10.1109/TPAMI.2016.2644615 http://dx.doi.org/10.1109/TPAMI.2016.2644615 ]

Bergmann P , Fauser M , Sattlegger D and Steger C . 2019 . MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach, USA : IEEE: 9584 - 9592 [ DOI: 10.1109/CVPR.2019.00982 http://dx.doi.org/10.1109/CVPR.2019.00982 ]

Bhalla K and Huang Y P . 2021 . An adaptive thresholding based method to locate and segment defects on LCD panels // Proceedings of 2021 International Conference on System Science and Engineering (ICSSE) . Ho Chi Minh City, Vietnam : IEEE: 328 - 333 [ DOI: 10.1109/ICSSE52999.2021.9538470 http://dx.doi.org/10.1109/ICSSE52999.2021.9538470 ]

Bi X and Ding H . 2010 . Machine vision inspection method of Mura defect for TFT-LCD . Journal of Mechanical Engineering , 46 ( 12 ): 13 - 19

毕昕 , 丁汉 . 2010 . TFT-LCD Mura缺陷机器视觉检测方法 . 机械工程学报 , 46 ( 12 ): 13 - 19 [ DOI: 10.3901/JME.2010.12.013 http://dx.doi.org/10.3901/JME.2010.12.013 ]

Bi X , Zhuang C G and Ding H . 2009 . A new Mura defect inspection way for TFT-LCD using level set method . IEEE Signal Processing Letters , 16 ( 4 ): 311 - 314 [ DOI: 10.1109/LSP.2009.2014113 http://dx.doi.org/10.1109/LSP.2009.2014113 ]

Cen Y G , Zhao R Z , Cen L H , Cui L H , Miao Z J and Wei Z . 2015 . Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction . Neurocomputing , 149 : 1206 - 1215 [ DOI: 10.1016/j.neucom.2014.09.007 http://dx.doi.org/10.1016/j.neucom.2014.09.007 ]

Chen F C , Fang L T , Lee L , Wen C H , Cheng S Y and Wang S J . 2005 . LOG-filter-based inspection of cluster Mura and vertical-band Mura on liquid crystal displays // Proceedings Volume 5679 , Machine Vision Applications in Industrial Inspection XIII. San Jose, USA : SPIE: 257 - 265 [ DOI: 10.1117/12.586688 http://dx.doi.org/10.1117/12.586688 ]

Chen L C and Kuo C C . 2008 . Automatic TFT-LCD Mura defect inspection using discrete cosine transform-based background filtering and ‘just noticeable difference’ quantification strategies . Measurement Science and Technology , 19 ( 1 ): # 015507 [ DOI: 10.1088/0957-0233/19/1/015507 http://dx.doi.org/10.1088/0957-0233/19/1/015507 ]

Chen M F , Chen P , Wang S , Cui Y , Zhang Y X and Chen S L . 2022 . TFT-LCD Mura defect visual inspection method in multiple backgrounds . Journal of the Society for Information Display , 30 ( 11 ): 818 - 831 [ DOI: 10.1002/jsid.1171 http://dx.doi.org/10.1002/jsid.1171 ]

Chen S L and Chou S T . 2008 . TFT-LCD Mura defect detection using wavelet and cosine transforms . Journal of Advanced Mechanical Design, Systems, and Manufacturing , 2 ( 3 ): 441 - 453 [ DOI: 10.1299/jamdsm.2.441 http://dx.doi.org/10.1299/jamdsm.2.441 ]

Cimpoi M , Maji S , Kokkinos I , Mohamed S and Vedaldi A . 2014 . Describing textures in the wild // Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition . Columbus, USA : IEEE: 3606 - 3613 [ DOI: 10.1109/CVPR.2014.461 http://dx.doi.org/10.1109/CVPR.2014.461 ]

Dai C D , Xu G L , Mao J , Gu T and Luo J Y . 2021 . Cell phone screen defect segmentation based on unsupervised network . Laser and Optoelectronics Progress , 58 ( 20 ): #2015003

代朝东 , 许国良 , 毛骄 , 顾桐 , 雒江涛 . 2021 . 基于无监督网络的手机屏幕缺陷分割方法 . 激光与光电子学进展 , 58 ( 20 ): # 2015003 [ DOI: 10.3788/LOP202158.2015003 http://dx.doi.org/10.3788/LOP202158.2015003 ]

Du Y D , Feng L , Tao P , Gong X and Wang J . 2023 . Meta-transfer learning in cross-domain image classification with few-shot learning . Journal of Image and Graphics , 28 ( 9 ): 2899 - 2912

杜彦东 , 冯林 , 陶鹏 , 龚勋 , 王俊 . 2023 . 元迁移学习在少样本跨域图像分类中的研究 . 中国图象图形学报 , 28 ( 9 ): 2899 - 2912 [ DOI: 10.11834/jig.220664 http://dx.doi.org/10.11834/jig.220664 ]

Fan X H . 2022 . Research on Surface Defect Detection Method of LCD Screen Based on Deep Learning . Anqing : Anqing Normal University

范旭辉 . 2022 . 基于深度学习的液晶屏表面缺陷检测方法研究 . 安庆 : 安庆师范大学 [ DOI: 10.27761/d.cnki.gaqsf.2022.000254 http://dx.doi.org/10.27761/d.cnki.gaqsf.2022.000254 ]

Fang L T , Chen H C , Yin I C , Wang S J , Wen C H and Kuo C H . 2006 . Automatic Mura detection system for liquid crystal display panels // Proceedings Volume 6070 , Machine Vision Applications in Industrial Inspection XIV. San Jose, USA : SPIE: 143 - 152 [ DOI: 10.1117/12.650686 http://dx.doi.org/10.1117/12.650686 ]

Gan Y Z and Zhao Q F . 2013 . An effective defect inspection method for LCD using active contour model . IEEE Transactions on Instrumentation and Measurement , 62 ( 9 ): 2438 - 2445 [ DOI: 10.1109/TIM.2013.2258242 http://dx.doi.org/10.1109/TIM.2013.2258242 ]

Goodfellow I , Pouget-Abadie J , Mirza M , Xu B , Warde-Farley D , Ozair S , Courville A and Bengio Y . 2020 . Generative adversarial networks . Communications of the ACM , 63 ( 11 ): 139 - 144 [ DOI: 10.1145/3422622 http://dx.doi.org/10.1145/3422622 ]

He K M , Zhang X Y , Ren S Q and Sun J . 2016 . Deep residual learning for image recognition // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Las Vegas, USA : IEEE: 770 - 778 [ DOI: 10.1109/CVPR.2016.90 http://dx.doi.org/10.1109/CVPR.2016.90 ]

He Z Y and Sun L N . 2015 . Surface defect detection method for glass substrate using improved Otsu segmentation . Applied Optics , 54 ( 33 ): 9823 - 9830 [ DOI: 10.1364/AO.54.009823 http://dx.doi.org/10.1364/AO.54.009823 ]

Hecht S . 1924 . The visual discrimination of intensity and the Weber-Fechner law . The Journal of General Physiology , 7 ( 2 ): 235 - 267 [ DOI: 10.1085/jgp.7.2.235 http://dx.doi.org/10.1085/jgp.7.2.235 ]

Hinton G E and Salakhutdinov R R . 2006 . Reducing the dimensionality of data with neural networks . Science , 313 ( 5786 ): 504 - 507 [ DOI: 10.1126/science.1127647 http://dx.doi.org/10.1126/science.1127647 ]

Huang G , Liu Z , van der Maaten L and Weinberger K Q . 2017 . Densely connected convolutional networks // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu, USA : IEEE: 2261 - 2269 [ DOI: 10.1109/CVPR.2017.243 http://dx.doi.org/10.1109/CVPR.2017.243 ]

Jazi A Y , Liu J J and Lee H . 2012 . Automatic inspection of TFT-LCD glass substrates using optimized support vector machines . IFAC Proceedings Volumes , 45 ( 15 ): 325 - 330 [ DOI: 10.3182/20120710-4-SG-2026.00054 http://dx.doi.org/10.3182/20120710-4-SG-2026.00054 ]

Jian C X . 2015 . Review of TFT-LCD surface defect detection methods . Video Engineering , 39 ( 9 ): 146 - 152

简川霞 . 2015 . TFT-LCD表面缺陷检测方法综述 . 电视技术 , 39 ( 9 ): 146 - 152 [ DOI: 10.16280/j.videoe.2015.09.034 http://dx.doi.org/10.16280/j.videoe.2015.09.034 ]

Jian C X , Wang H M , Xu J J , Su L H and Wang T P . 2021 . Automatic surface defect detection for OLED display . Packaging Engineering , 42 ( 13 ): 280 - 287

简川霞 , 王华明 , 徐进军 , 苏林海 , 王太平 . 2021 . OLED显示屏表面缺陷自动检测方法 . 包装工程 , 42 ( 13 ): 280 - 287 [ DOI: 10.19554/j.cnki.1001-3563.2021.13.039 http://dx.doi.org/10.19554/j.cnki.1001-3563.2021.13.039 ]

Jin S Q , Ji C , Yan C C and Xing J Y . 2018 . TFT-LCD Mura defect detection using DCT and the dual-γ piecewise exponential transform . Precision Engineering , 54 : 371 - 378 [ DOI: 10.1016/j.precisioneng.2018.07.006 http://dx.doi.org/10.1016/j.precisioneng.2018.07.006 ]

Kang S B , Lee J H , Song K Y and Pahk H J . 2009 . Automatic defect classification of TFT-LCD panels using machine learning // Proceedings of 2009 IEEE International Symposium on Industrial Electronics . Seoul, Korea (South) : IEEE: 2175 - 2177 [ DOI: 10.1109/ISIE.2009.5213760 http://dx.doi.org/10.1109/ISIE.2009.5213760 ]

Krizhevsky A , Sutskever I and Hinton G . 2017 . ImageNet classification with deep convolutional neural networks . Communications of the ACM , 60 ( 6 ): 84 - 90 [ DOI: 10.1145/3065386 http://dx.doi.org/10.1145/3065386 ]

Lee J Y and Yoo S I . 2004 . Automatic detection of region-Mura defect in TFT-LCD . IEICE Transactions on Information and Systems , 87 ( 10 ): 2371 - 2378

Lee M C H , Petersen K , Pawlowski N , Glocker B and Schaap M . 2019 . TETRIS: template Transformer networks for image segmentation with shape priors . IEEE Transactions on Medical Imaging , 38(11) 2596 - 2606 [ DOI: 10.1109/TMI.2019.2905990 http://dx.doi.org/10.1109/TMI.2019.2905990 ]

Lei J , Gao X , Feng Z L , Qiu H M and Song M L . 2018 . Scale insensitive and focus driven mobile screen defect detection in industry . Neurocomputing , 294 : 72 - 81 [ DOI: 10.1016/j.neucom.2018.03.013 http://dx.doi.org/10.1016/j.neucom.2018.03.013 ]

Li C M , Kao C Y , Gore J C and Ding Z H . 2007 . Implicit active contours driven by local binary fitting energy // Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition . Minneapolis, USA : IEEE: #383014 [ DOI: 10.1109/CVPR.2007.383014 http://dx.doi.org/10.1109/CVPR.2007.383014 ]

Li C M , Kao C Y , Gore J C and Ding Z H . 2008 . Minimization of region scalable fitting energy for image segmentation . IEEE Transactions on Image Processing , 17 ( 10 ): 1940 - 1949 [ DOI: 10.1109/TIP.2008.2002304 http://dx.doi.org/10.1109/TIP.2008.2002304 ]

Li K , Li H , Liu Y J , Liang P and Lu X P . 2014 . Background suppression of LCD Mura defect using B-spline surface fitting . Opto-Electronic Engineering , 41 ( 2 ): 33 - 39

李坤 , 李辉 , 刘云杰 , 梁平 , 卢小鹏 . 2014 . LCD Mura缺陷的B样条曲面拟合背景抑制 . 光电工程 , 41 ( 2 ): 33 - 39 [ DOI: 10.3969/j.issn.1003-501X.2014.02.006 http://dx.doi.org/10.3969/j.issn.1003-501X.2014.02.006 ]

Li W C and Tsai D M . 2011 . Defect inspection in low-contrast LCD images using Hough transform-based nonstationary line detection . IEEE Transactions on Industrial Informatics , 7 ( 1 ): 136 - 147 [ DOI: 10.1109/TII.2009.2034844 http://dx.doi.org/10.1109/TII.2009.2034844 ]

Liang J F , Li T , Yang J Q , Li Y N , Fang Z W and Yang F . 2023 . Video anomaly detection by fusing self-attention and autoencoder . Journal of Image and Graphics , 28 ( 4 ): 1029 - 1040

梁家菲 , 李婷 , 杨佳琪 , 李亚楠 , 方智文 , 杨丰 . 2023 . 融合自注意力和自编码器的视频异常检测 . 中国图象图形学报 , 28 ( 4 ): 1029 - 1040 [ DOI: 10.11834/jig.211147 http://dx.doi.org/10.11834/jig.211147 ]

Lin G M , Kong L F , Liu T J , Qiu L D and Chen X Y . 2022 . An antagonistic training algorithm for TFT-LCD module Mura defect detection . Signal Processing: Image Communication , 107 : # 116791 [ DOI: 10.1016/j.image.2022.116791 http://dx.doi.org/10.1016/j.image.2022.116791 ]

Lin T Y , Goyal P , Girshick R , He K M and Doll􀅡r P . 2020 . Focal loss for dense object detection . IEEE Transactions on Pattern Analysis and Machine Intelligence , 42 ( 2 ): 318 - 327 [ DOI: 10.1109/TPAMI.2018.2858826 http://dx.doi.org/10.1109/TPAMI.2018.2858826 ]

Liu J Y , Wu H , Liu Y L and Wang J C . 2022 . Automatic generation and detection method of LCD samples based on deep learning // Proceedings of the 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) . Ma’anshan, China : IEEE: 724 - 730 [ DOI: 10.1109/WCMEIM56910.2022.10021421 http://dx.doi.org/10.1109/WCMEIM56910.2022.10021421 ]

Liu Q . 2020 . Research on Visual Inspection Technology for Display Defects of New Array Panel . Harbin : Harbin Institute of Technology

刘强 . 2020 . 新型阵列屏体的显示缺陷视觉检测技术研究 . 哈尔滨 : 哈尔滨工业大学 [ DOI: 10.27061/d.cnki.ghgdu.2020.006330 http://dx.doi.org/10.27061/d.cnki.ghgdu.2020.006330 ]

Liu W , Anguelov D , Erhan D , Szegedy C , Reed S , Fu C Y and Berg A C . 2016 . SSD: single shot MultiBox detector // Proceedings of the 14th European Conference on Computer Vision . Amsterdam, The Netherlands : Springer: 21 - 37 [ DOI: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2 ]

Liu Y H and Chen Y J . 2011 . Automatic defect detection for TFT-LCD array process using quasiconformal kernel support vector data description . International Journal of Molecular Sciences , 12 ( 9 ): 5762 - 5781 [ DOI: 10.3390/ijms12095762 http://dx.doi.org/10.3390/ijms12095762 ]

Liu Y H , Huang Y K and Lee M J . 2008 . Automatic inline defect detection for a thin film transistor—liquid crystal display array process using locally linear embedding and support vector data description . Measurement Science and Technology , 19 ( 9 ): # 095501 [ DOI: 10.1088/0957-0233/19/9/095501 http://dx.doi.org/10.1088/0957-0233/19/9/095501 ]

Liu Y H , Lin S H , Hsueh Y L and Lee M J . 2009a . Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble . Expert Systems with Applications , 36 ( 2 ): 1978 - 1998 [ DOI: 10.1016/j.eswa.2007.12.015 http://dx.doi.org/10.1016/j.eswa.2007.12.015 ]

Liu Y H , Liu Y C and Chen Y Z . 2011 . High-speed inline defect detection for TFT-LCD array process using a novel support vector data description . Expert Systems with Applications , 38 ( 5 ): 6222 - 6231 [ DOI: 10.1016/j.eswa.2010.11.046 http://dx.doi.org/10.1016/j.eswa.2010.11.046 ]

Liu Y H , Wang C K , Ting Y , Lin W Z , Kang Z H , Chen C S and Hwang J S . 2009b . In-TFT-array-process micro defect inspection using nonlinear principal component analysis . International Journal of Molecular Sciences , 10 ( 10 ): 4498 - 4514 [ DOI: 10.3390/ijms10104498 http://dx.doi.org/10.3390/ijms10104498 ]

Lu C J and Tsai D M . 2005 . Automatic defect inspection for LCDs using singular value decomposition . The International Journal of Advanced Manufacturing Technology , 25 ( 1/2 ): 53 - 61 [ DOI: 10.1007/s00170-003-1832-6 http://dx.doi.org/10.1007/s00170-003-1832-6 ]

Lu C J and Tsai D M . 2008 . Independent component analysis-based defect detection in patterned liquid crystal display surfaces . Image and Vision Computing , 26 ( 7 ): 955 - 970 [ DOI: 10.1016/j.imavis.2007.10.007 http://dx.doi.org/10.1016/j.imavis.2007.10.007 ]

Lu H P and Su C T . 2021 . CNNs combined with a conditional GAN for Mura defect classification in TFT-LCDs . IEEE Transactions on Semiconductor Manufacturing , 34 ( 1 ): 25 - 33 [ DOI: 10.1109/TSM.2020.3048631 http://dx.doi.org/10.1109/TSM.2020.3048631 ]

Lu X P . 2014 . Study on the Methods of Machine Vision Inspection for the Mura Defect of TFT-LCD . Chengdu : University of Electronic Science and Technology of China

卢小鹏 . 2014 . TFT-LCD Mura缺陷机器视觉检测方法研究 . 成都 : 电子科技大学

Lu X P , Li H , Liu Y J , Liang P and Li K . 2014 . Algorithm for fast TFT-LCD Mura defect image segmentation based on Chan-Vese model . Chinese Journal of Liquid Crystals and Displays , 29 ( 1 ): 146 - 151

卢小鹏 , 李辉 , 刘云杰 , 梁平 , 李坤 . 2014 . 基于Chan-Vese模型的TFT-LCD Mura缺陷快速分割算法 . 液晶与显示 , 29 ( 1 ): 146 - 151 [ DOI: 10.3788/YJYXS20142901.0146 http://dx.doi.org/10.3788/YJYXS20142901.0146 ]

Lu Y , Ma L and Jiang H Q . 2020 . A light CNN model for defect detection of LCD // Frontier Computing (FC 2019) . Singapore, Singapore : Springer: 10 - 19 [ DOI: 10.1007/978-981-15-3250-4_2 http://dx.doi.org/10.1007/978-981-15-3250-4_2 ]

Mallikarjuna P , Targhi A T , Fritz M , Hayman E , Caputo B and Eklundh J O . 2006 . The KTH-TIPS2 database. Stockholm, Sweden: Computational Vision and Active Perception Laboratory, School of Computer Science and Communication

Mei S . 2017 . Research on TFT-LCD Mura Defect Recognition Based on Deep Learning . Wuhan : Huazhong University of Science and Technology

梅爽 . 2017 . 基于深度学习的液晶屏Mura缺陷图像识别算法研究 . 武汉 : 华中科技大学

Mei S , Yang H and Yin Z P . 2017 . Unsupervised-learning-based feature-level fusion method for Mura defect recognition . IEEE Transactions on Semiconductor Manufacturing , 30 ( 1 ): 105 - 113 [ DOI: 10.1109/TSM.2017.2648856 http://dx.doi.org/10.1109/TSM.2017.2648856 ]

Mei S , Yang H and Yin Z P . 2018 . An unsupervised-learning-based approach for automated defect inspection on textured surfaces . IEEE Transactions on Instrumentation and Measurement , 67 ( 6 ): 1266 - 1277 [ DOI: 10.1109/TIM.2018.2795178 http://dx.doi.org/10.1109/TIM.2018.2795178 ]

Ming W Y , Zhang S F , Liu X W , Liu K , Yuan J , Xie Z B , Sun P Y and Guo X D . 2021 . Survey of Mura defect detection in liquid crystal displays based on machine vision . Crystals , 11 ( 12 ): # 1444 [ DOI: 10.3390/cryst11121444 http://dx.doi.org/10.3390/cryst11121444 ]

Nakano H and Mori Y . 2005 . Measurement method for low-contrast nonuniformity in liquid crystal displays by using multi-wavelet analysis // Proceedings Volume 5880 , Optical Diagnostics. San Diego, USA : SPIE: 313 - 318 [ DOI: 10.1117/12.616232 http://dx.doi.org/10.1117/12.616232 ]

Oh J H , Yun B J and Park K H . 2007 . The defect detection using human visual system and wavelet transform in TFT-LCD image // 2007 Frontiers in the Convergence of Bioscience and Information Technologies . Jeju, Korea (South) : IEEE: 498 - 503 [ DOI: 10.1109/FBIT.2007.49 http://dx.doi.org/10.1109/FBIT.2007.49 ]

Ouyang T . 2018 . Research and Implementation of Defect Detection Algorithm for OLED Display . Shanghai : Shanghai Jiao Tong University

欧阳韬 . 2018 . OLED显示屏缺陷检测算法的研究与实现 . 上海 : 上海交通大学

Peng D Q , Liu H and Xu G L . 2021 . Object segmentation algorithm modified by candidate box for fully convolution network . Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) , 33 ( 1 ): 135 - 143

彭大芹 , 刘恒 , 许国良 . 2021 . 使用候选框进行全卷积网络修正的目标分割算法 . 重庆邮电大学学报(自然科学版) , 33 ( 1 ): 135 - 143 [ DOI: 10.3979/j.issn.1673-825X.201903210099 http://dx.doi.org/10.3979/j.issn.1673-825X.201903210099 ]

Pratt W K , Sawkar S S and O’Reilly K . 1998 . Automatic blemish detection in liquid crystal flat panel displays // Proceedings Volume 3306 , Machine Vision Applications in Industrial Inspection VI. San Jose, USA : SPIE: 2 - 13 [ DOI: 10.1117/12.301232 http://dx.doi.org/10.1117/12.301232 ]

Qian J D , Chen B , Qian J Y , Zhao H J and Chen G . 2018 . Machine vision based inspection method of Mura defect for LCD . Computer Science , 45 ( 6 ): 296 - 300, 313

钱基德 , 陈斌 , 钱基业 , 赵恒军 , 陈刚 . 2018 . 基于机器视觉的液晶屏Mura缺陷检测方法 . 计算机科学 , 45 ( 6 ): 296 - 300 , 313 [ DOI: 10.11896/j.issn.1002-137X.2018.06.052 http://dx.doi.org/10.11896/j.issn.1002-137X.2018.06.052 ]

Redmon J , Divvala S , Girshick R and Farhadi A . 2016 . You only look once: unified, real-time object detection // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas, USA : IEEE: 779 - 788 [ DOI: 10.1109/CVPR.2016.91 http://dx.doi.org/10.1109/CVPR.2016.91 ]

Ren S Q , He K M , Girshick R and Sun J . 2017 . Faster R-CNN: towards real-time object detection with region proposal networks . IEEE Transactions on Pattern Analysis and Machine Intelligence , 39 ( 6 ): 1137 - 1149 [ DOI: 10.1109/TPAMI.2016.2577031 http://dx.doi.org/10.1109/TPAMI.2016.2577031 ]

Ronneberger O , Fischer P and Brox T . 2015 . U-Net: convolutional networks for biomedical image segmentation // Proceedings of the 18th Medical Image Computing and Computer-Assisted Intervention . Munich, Germany : Springer: 234 - 241 [ DOI: 10.1007/978-3-319-24574-4_28 http://dx.doi.org/10.1007/978-3-319-24574-4_28 ]

SEMI . 2002 . SEMI D31 - 1102 : Definition of measurement index (Semu) for luminance Mura in FPD image quality inspection //Japan FPD Metrology Committee Meeting Minutes. Yokohama, Japan

Sharan L , Rosenholtz R and Adelson E H . 2014 . Accuracy and speed of material categorization in real-world images . Journal of Vision , 14 ( 9 ): # 12 [ DOI: 10.1167/14.9.12 http://dx.doi.org/10.1167/14.9.12 ]

Shelhamer E , Long J and Darrell T . 2017 . Fully convolutional networks for semantic segmentation . IEEE Transactions on Pattern Analysis and Machine Intelligence , 39 ( 4 ): 640 - 651 [ DOI: 10.1109/TPAMI.2016.2572683 http://dx.doi.org/10.1109/TPAMI.2016.2572683 ]

Shuai L Y , Chen H X and Wang Z X . 2022 . Defect detection of four-color display screen based on color equalization and local dynamic threshold segmentation // Proceedings of AIIPCC 2022, the 3rd International Conference on Artificial Intelligence, Information Processing and Cloud Computing . Online : VDE: 1 - 5

Song K Y . 2021 . Research on Visual Inspection Algorithm of Mura Defects Based on Deep Feature Encoding . Wuhan : Huazhong University of Science and Technology

宋开友 . 2021 . 基于深度特征编码的Mura缺陷视觉检测算法研究 . 武汉 : 华中科技大学 [ DOI: 10.27157/d.cnki.ghzku.2021.006214 http://dx.doi.org/10.27157/d.cnki.ghzku.2021.006214 ]

Song K Y , Yang H and Yin Z P . 2021a . Multi-scale boosting feature encoding network for texture recognition . IEEE Transactions on Circuits and Systems for Video Technology , 31 ( 11 ): 4269 - 4282 [ DOI: 10.1109/TCSVT.2021.3051003 http://dx.doi.org/10.1109/TCSVT.2021.3051003 ]

Song K Y , Yang H and Yin Z P . 2022 . Anomaly composition and decomposition network for accurate visual inspection of texture defects . IEEE Transactions on Instrumentation and Measurement , 71 : # 5017814 [ DOI: 10.1109/TIM.2022.3196133 http://dx.doi.org/10.1109/TIM.2022.3196133 ]

Song S B , Yang K C , Wang A N , Zhang S S and Xia M . 2021b . A Mura detection model based on unsupervised adversarial learning . IEEE Access , 9 : 49920 - 49928 [ DOI: 10.1109/ACCESS.2021.3069466 http://dx.doi.org/10.1109/ACCESS.2021.3069466 ]

Tan M X and Le Q V . 2019 . EfficientNet: rethinking model scaling for convolutional neural networks // Proceedings of the 36th International Conference on Machine Learning . Long Beach, USA : JMLR: 6105 - 6114 [ DOI: 10.48550/arXiv.1905.11946 http://dx.doi.org/10.48550/arXiv.1905.11946 ]

Tan M X , Pang R M and Le Q V . 2020 . EfficientDet: scalable and efficient object detection // Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE: 10778 - 10787 [ DOI: 10.1109/CVPR42600.2020.01079 http://dx.doi.org/10.1109/CVPR42600.2020.01079 ]

Taniguchi K , Ueta K , Onishi H and Tatsumi S . 2007 . A method of Mura intensity quantification using multi-level sliced images // Proceedings Volume 6356 , the 8th International Conference on Quality Control by Artificial Vision. Le Creusot, France : SPIE: 124 - 131 [ DOI: 10.1117/12.736735 http://dx.doi.org/10.1117/12.736735 ]

Torres G M , Souza A S , Ferreira D A O , Junior L C S G , Ouchi K Y , Valadao M D M , Silva M O , Cavalcante V L G , Mattos E V C U , Pereira A M C , Cruz C F S , Silva A P , Belem R J S , Costa A S , Evangelista L G C , Junior W C C , Paula R G , Bezerra T B , Junior W S S and Carvalho C B . 2021 . Automated Mura defect detection system on LCD displays using random forest classifier // Proceedings of 2021 IEEE International Conference on Consumer Electronics (ICCE) . Las Vegas, USA : IEEE: #9427579 [ DOI: 10.1109/ICCE50685.2021.9427579 http://dx.doi.org/10.1109/ICCE50685.2021.9427579 ]

Tsai D M , Chuang S T and Tseng Y H . 2007 . One-dimensional-based automatic defect inspection of multiple patterned TFT-LCD panels using Fourier image reconstruction . International Journal of Production Research , 45 ( 6 ): 1297 - 1321 [ DOI: 10.1080/00207540600622464 http://dx.doi.org/10.1080/00207540600622464 ]

Tsai D M , Fan S K S and Chou Y H . 2021 . Auto-annotated deep segmentation for surface defect detection . IEEE Transactions on Instrumentation and Measurement , 70 : # 5011410 [ DOI: 10.1109/TIM.2021.3087826 http://dx.doi.org/10.1109/TIM.2021.3087826 ]

Tsai D M and Hung C Y . 2005 . Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition . International Journal of Production Research , 43 ( 21 ): 4589 - 4607 [ DOI: 10.1080/00207540500140732 http://dx.doi.org/10.1080/00207540500140732 ]

Tsai D M , Lin P C and Lu C J . 2006 . An independent component analysis-based filter design for defect detection in low-contrast surface images . Pattern Recognition , 39 ( 9 ): 1679 - 1694 [ DOI: 10.1016/j.patcog.2006.03.005 http://dx.doi.org/10.1016/j.patcog.2006.03.005 ]

Tuyen Le N , Wang J W , Shih M H and Wang C C . 2020 . Novel framework for optical film defect detection and classification . IEEE Access , 8 : 60964 - 60978 [ DOI: 10.1109/ACCESS.2020.2982250 http://dx.doi.org/10.1109/ACCESS.2020.2982250 ]

Wang H S and Yang Y Y . 2018 . Surface defect inspection of TFT-LCD panels based on improved saliency model . Journal of Electronic Measurement and Instrumentation , 32 ( 7 ): 29 - 35

王宏硕 , 杨永跃 . 2018 . 基于改进显著性模型的TFT-LCD面板缺陷检测 . 电子测量与仪器学报 , 32 ( 7 ): 29 - 35 [ DOI: 10.13382/j.jemi.2018.07.005 http://dx.doi.org/10.13382/j.jemi.2018.07.005 ]

Wang X , Dong R and Li B . 2016 . TFT-LCD Mura defect detection based on ICA and multi-channels fusion // Proceedings of the 3rd International Conference on Information Science and Control Engineering (ICISCE) . Beijing, China : IEEE: 687 - 691 [ DOI: 10.1109/ICISCE.2016.152 http://dx.doi.org/10.1109/ICISCE.2016.152 ]

Wang Y Y , Hou J , Li M S , Xue T and Xiao X . 2021 . Defect detection of LCD based on texture elimination . Electronic Measurement Technology , 44 ( 12 ): 93 - 96

汪永勇 , 侯俊 , 李梦思 , 薛彤 , 肖雄 . 2021 . 基于纹理消除的液晶屏缺陷检测 . 电子测量技术 , 44 ( 12 ): 93 - 96 [ DOI: 10.19651/j.cnki.emt.2106557 http://dx.doi.org/10.19651/j.cnki.emt.2106557 ]

Wieler M , Hahn T and Hamprecht F A . 2007 . Weakly supervised learning for industrial optical inspection [EB/OL]. [ 2023-07-06 ]. https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection

Xie E Z , Wang W J , Wang W H , Sun P Z , Xu H , Liang D and Luo P . 2021 . Trans2Seg: transparent object segmentation with Transformer [EB/OL]. [ 2023-07-06 ]. https://arxiv.org/pdf/2101.08461v2.pdf https://arxiv.org/pdf/2101.08461v2.pdf

Xie R , Li G and Zhang R B . 2016 . High quality background modeling of LCD-Mura defect . Journal of Computer Applications , 36 ( 4 ): 1151 - 1155 , 1162

谢瑞 , 李钢 , 张仁斌 . 2016 . 液晶显示器斑痕缺陷高质量背景建模 . 计算机应用 , 36 ( 4 ): 1151 - 1155 [ DOI: 10.11772/j.issn.1001-9081.2016.04.1151 http://dx.doi.org/10.11772/j.issn.1001-9081.2016.04.1151 ]

Xie X H and Mirmehdi M . 2007 . TEXEMS: texture exemplars for defect detection on random textured surfaces . IEEE Transactions on Pattern Analysis and Machine Intelligence , 29 ( 8 ): 1454 - 1464 [ DOI: 10.1109/TPAMI.2007.1038 http://dx.doi.org/10.1109/TPAMI.2007.1038 ]

Yan C C , Jin S Q , Yan Z Z and Hu H B . 2017 . TFT-LCD detection algorithm combining weighted template difference image and bilateral filtering . Journal of Electronic Measurement and Instrumentation , 31 ( 9 ): 1434 - 1440

严成宸 , 金施群 , 闫真真 , 胡海兵 . 2017 . 结合加权模板差图与双边滤波的TFT-LCD检测算法 . 电子测量与仪器学报 , 31 ( 9 ): 1434 - 1440 [ DOI: 10.13382/j.jemi.2017.09.013 http://dx.doi.org/10.13382/j.jemi.2017.09.013 ]

Yang H , Chen Y F , Song K Y and Yin Z P . 2019 . Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects . IEEE Transactions on Automation Science and Engineering , 16 ( 3 ): 1450 - 1467 [ DOI: 10.1109/TASE.2018.2886031 http://dx.doi.org/10.1109/TASE.2018.2886031 ]

Yang H , Mei S , Song K Y , Tao B and Yin Z P . 2018b . Transfer-learning-based online Mura defect classification . IEEE Transactions on Semiconductor Manufacturing , 31 ( 1 ): 116 - 123 [ DOI: 10.1109/TSM.2017.2777499 http://dx.doi.org/10.1109/TSM.2017.2777499 ]

Yang H , Song K Y , Mei S and Yin Z P . 2018a . An accurate Mura defect vision inspection method using outlier-prejudging-based image background construction and region-gradient-based level set . IEEE Transactions on Automation Science and Engineering , 15 ( 4 ): 1704 - 1721 [ DOI: 10.1109/TASE.2018.2823709 http://dx.doi.org/10.1109/TASE.2018.2823709 ]

Yang H , Zhou Q Y , Song K Y and Yin Z P . 2021 . An anomaly feature-editing-based adversarial network for texture defect visual inspection . IEEE Transactions on Industrial Informatics , 17 ( 3 ): 2220 - 2230 [ DOI: 10.1109/TII.2020.3015765 http://dx.doi.org/10.1109/TII.2020.3015765 ]

Yang Q , Zhao Y Q , Zhang F and Liao M . 2022 . Automatic segmentation of defect in high-precision and small-field TFT-LCD images . Laser and Optoelectronics Progress , 59 ( 12 ): 1215008

杨勍 , 赵于前 , 张帆 , 廖苗 . 2022 . 高精度小视野TFT-LCD图像异物缺陷自动分割 . 激光与光电子学进展 , 59 ( 12 ): # 1215008 [ DOI: 10.3788/LOP202259.1215008 http://dx.doi.org/10.3788/LOP202259.1215008 ]

Yun J W , Gu H , Kim D H , Moon H S and Ko S J . 2014 . Automatic Mura inspection using the principal component analysis for the TFT-LCD panel // Proceedings of 2014 IEEE International Conference on Consumer Electronics . Taipei, China : IEEE: 109 - 110 [ DOI: 10.1109/ICCE-TW.2014.6904008 http://dx.doi.org/10.1109/ICCE-TW.2014.6904008 ]

Zeng Y . 2017 . Research of Key Technologies for TFT-LCD Display Defects Detection System Base on Machine Vision . Yueyang : Hunan Institute of Science and Technology

曾毅 . 2017 . 基于机器视觉的液晶屏点灯缺陷检测系统关键技术研究 . 岳阳 : 湖南理工学院

Zhang T D , Lu R S and Zhang S Z . 2016 . Surface defect inspection of TFT-LCD panels based on 2D DFT . Opto-Electronic Engineering , 43 ( 3 ): 7 - 15

张腾达 , 卢荣胜 , 张书真 . 2016 . 基于二维DFT的TFT-LCD平板表面缺陷检测 . 光电工程 , 43 ( 3 ): 7 - 15 [ DOI: 10.3969/j.issn.1003-501X.2016.03.002 http://dx.doi.org/10.3969/j.issn.1003-501X.2016.03.002 ]

Zhang Y and Zhang J . 2006a . Automatic blemish inspection for TFT-LCD based on polynomial surface fitting . Opto-Electronic Engineering , 33 ( 10 ): 108 - 114

张昱 , 张健 . 2006a . 基于多项式曲面拟合的TFT-LCD斑痕缺陷自动检测技术 . 光电工程 , 33 ( 10 ): 108 - 114 [ DOI: 10.3969/j.issn.1003-501X.2006.10.021 http://dx.doi.org/10.3969/j.issn.1003-501X.2006.10.021 ]

Zhang Y and Zhang J . 2006b . Application of fuzzy expert system in defect inspection of TFT-LCD . Journal of Optoelectronics·Laser , 17 ( 6 ): 719 - 723

张昱 , 张健 . 2006b . 模糊专家系统在TFT-LCD缺陷检测中的应用 . 光电子·激光 , 17 ( 6 ): 719 - 723 [ DOI: 10.3321/j.issn:1005-0086.2006.06.018 http://dx.doi.org/10.3321/j.issn:1005-0086.2006.06.018 ]

Zhou Z H . 2016 . Machine Learning . Beijing : Tsinghua University Press

周志华 . 2016 . 机器学习 . 北京 : 清华大学出版社

Zhu H D , Huang J C , Liu H W , Zhou Q W , Zhu J Q and Li B Q . 2022 . Deep-learning-enabled automatic optical inspection for module-level defects in LCD . IEEE Internet of Things Journal , 9 ( 2 ): 1122 - 1135 [ DOI: 10.1109/JIOT.2021.3079440 http://dx.doi.org/10.1109/JIOT.2021.3079440 ]

🎈 相关推荐

手机屏幕使用时间在哪看?安卓和苹果各在这里查看
365体育亚洲官方登录

手机屏幕使用时间在哪看?安卓和苹果各在这里查看

📅 12-03 👀 8401
绝地求生黑号什么意思
365体育亚洲官方登录

绝地求生黑号什么意思

📅 10-26 👀 5624
城市学研究信息2025年第1期(总第1616期)
365体育亚洲官方登录

城市学研究信息2025年第1期(总第1616期)

📅 06-27 👀 571